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Abstract Automatic discrimination of plant species is
required for precision farming and for advanced environ-
mental protection. For this task, reflected sunlight has
already been tested whereas fluorescence emission has been
only scarcely considered. Here, we investigated the dis-
criminative potential of chlorophyll fluorescence imaging in
a case study using three closely related plant species of the
family Lamiaceae. We compared discriminative potential of
eight classifiers and four feature selection methods to
identify the fluorescence parameters that can yield the
highest contrast between the species. Three plant species:
Ocimum basilicum, Origanum majorana and Origanum
vulgare were grown separately as well as in pots where all
three species were mixed. First, eight statistical classifiers
were applied and tested in simulated species discrimination.
The performance of the Quadratic Discriminant Classifier
was found to be the most efficient. This classifier was
further applied in combination with four different methods
of feature selection. The Sequential Forward Floating
Selection was found as the most efficient method for
selecting the best performing subset of fluorescence images.
The ability of the combinatorial statistical techniques for
discriminating the species was also compared to the
resolving power of conventional fluorescence parameters
and found to be more efficient.
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Acronyms and symbols
CCD Charge Coupled Device
ChlF Chlorophyll Fluorescence
F0 minimal fluorescence level of dark adapted

plants when primary quinone accepter (QA)
of Photosystem II is oxidized

FM maximal fluorescence level of dark adapted
leaves measured when QA and the plastoqui-
none pool are reduced

FV=FM-F0 variable fluorescence
FLDC Fisher’s Linear Discriminant Classifier
IFS Individual Feature Selection
k-NN k-Nearest Neighbor Classifier
LDC Linear Discriminant Classifier
NEURC Automatic neural networks Classifier
NMC Nearest Mean Classifier
NN Nearest Neighbor Classifier
NPQ Non-Photochemical Quenching
QDC Quadratic Discriminant Classifier
qP Photochemical quenching
Rfd Fluorescence decrease ratio
SBS Sequential Backward Selection
SFFS Sequential Forward Floating Selection
SFS Sequential Forward Selection
SVC Support Vector Classifier

Introduction

Species discrimination is applied in precision farming for
machine weeding or to reduce excess use of agrochemicals
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by a targeted application [1, 2]. Weed detection in crop
fields and a targeted application of agrochemicals can save
50–90% of herbicides. Such a reduction would lead to
significant economic and ecologic benefits [1, 3, 4]. Several
methods based on machine vision of reflected natural light
are available for the discrimination of plant species in field
[5–7]. One class of techniques discriminates the species
using their shape, size, and image texture [8, 9]. These
techniques have several limitations, e.g., due to shapes that
vary greatly with viewing angle, overlapping leaves that are
hard to resolve, and segmentation that can be difficult due
to non-uniform illumination [10]. The main disadvantage of
shape-based techniques is low performance in real time
[11].

Other methods utilize differences in the spectrum of the
light that is reflected from plants. Earlier, the spectral
resolution was limited by use of a multispectral reflectance
sensor that measured the reflectance images only within
several wide spectral bands [12]. With such a limited
spectral resolution, non-uniform light illumination that
often occurs in field conditions can greatly complicate
species discrimination [13, 14]. Later, hyperspectral reflec-
tance sensors were developed that measure hundreds of
images, each in a very narrow band of the reflected light.
However, the classification accuracy remained frequently
inadequate even with the hyperspectral resolution (see [15],
reviewed in [16]).

Rather than using reflected light, we focus here on
actively excited chlorophyll fluorescence (ChlF) emission,
the reporter signal that has already proven its potential both
in research and in numerous applications [17, 18]. The
imaging variant of the technique measures hundreds of
ChlF images capturing fluorescence transient that occurs in
response to actinic light exposure [18]. Many conventional
ChlF parameters have been identified that have physiolog-
ical interpretation and are useful for, e.g., assessment of
plant health status and early detection of biotic and abiotic
stresses [19–21]. We suggest that the information in the
ChlF transients can be also used for plant species
identification [22, 23].

Practical application of the species discrimination based
on hyperspectral reflectance or on fluorescence emission
imaging is limited by potentially long time intervals that
may be required to collect and analyze data in real time [22,
24, 25]. The long acquisition time required to capture some
of the conventional fluorescence parameters (e.g., NPQ or
Rfd), [26] must be solved by development of alternative
experimental protocols and/or by use of ChlF parameters
that can be acquired in real time and fast enough for the
particular application.

In the present work, we focus at the computation time
that can be reduced by eliminating redundant or low-
contrast information and by selective use of information-

rich images as identified by feature selection methods [27,
28] or by genetic algorithms [23, 29, 30]. Recently, we
applied a combination of the k-Nearest-Neighbor (k-NN)
classifier and the Sequential Forward Floating Selection
(SFFS) feature selection method to discriminate infected
and non-infected segments of leaves of Arabidopsis
thaliana [27, 28]—a task homologous to species discrimi-
nation. Here, we aim at finding the best performing statistical
methods that are selected from a broader spectrum of
classifiers and feature selection methods. The contrasting
features found by this optimized technique are compared
with discrimination performance of the conventional ChlF
parameters as they are presently used in plant science.

Material and methods

Plant material and growth conditions

Three closely related species: basil (Ocimum basilicum),
oregano (Origanum vulgare) and sweet marjoram (Origanum
majorana), all of the family Lamiaceae, were selected for the
experiment. The seeds of these plants were germinated in
pots of 0.08 m diameter containing garden soil at room
temperature, under natural relative humidity and light regime
at the window of our laboratory. 30–50 plantlets of given
species grew in each pot. In another set-up, seeds of the three
species were randomly mixed (3×10–20 seeds of each) and
germinated in three pots. The ChlF transients were measured
10 days after germination.

Chlorophyll fluorescence imaging

The sequences of ChlF images were measured using open
version of FluorCam (Photon Systems Instruments Ltd.),
Brno, Czech Republic, [31]. The plant ChlF was excited
with short measuring flashes (10–30 µs) and photochemis-
try was elicited by actinic light from the same set of orange
Light Emitting Diodes (LED, 620 nm). The flashes were
synchronized with the opening of the electronic shutter of
the CCD camera (512×512 pixels, 12 bits) capturing the
ChlF images. An optical filter RG695 was placed in front
of the CCD camera that blocked the exciting light and
allowed to measure the ChlF transient in the range 700–
750 nm.

The quenching protocol with two sequentially applied
levels of actinic light irradiance was used to measure the
ChlF images. This protocol was already used earlier for
discrimination between the healthy and infected tissue
segments of Arabidopsis thaliana and is described in detail
in [27, 28]. After measuring sequence of ChlF images, all
the pixels of plants were separated from its background
using a threshold subtraction. The threshold value was
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chosen from the most contrasting image in the sequence.
Using this technique, vectors of ChlF transients of all the
plant pixels were extracted.

Data analysis tool

The ChlF images were analyzed using Matlab 6.5 and Pattern
Recognition Toolbox PRTools v. 3.0 [32]. Algorithms of this
toolbox randomly divide the data (vectors of ChlF transients
in individual pixels) in two subsets: One subset of transients
is used as a reference representing the species (classes) and
the other subset is used to perform a simulated classification
that serves to assess the algorithm performance. Eight
classifiers and four feature selection algorithms were selected
from the toolbox to study their efficiency for discrimination
of the species.

Classifiers

Statistical classifier is a decision rule that assigns particular
ChlF transient to one of the pre-defined classes. We tested
the following eight classifiers for their performance and
computation time requirement: Linear Discriminant Classi-
fier (LDC) [33–35], Quadratic Discriminant Classifier
(QDC) [36, 37], Fisher’s Linear Discriminant Classifier
(FLDC) [38], k-Nearest Neighbor Classifier (k-NNC) [39],
Nearest Neighbor Classifier (NNC), Automatic Neural
Network Classifier (NEURC) [36, 37], Support Vector
Classifier (SVC) [40–43] and Nearest Mean Classifier
(NMC) [44].

Evaluation of the classifier performance

The ChlF transients recorded in monoculture pots with basil
(a), oregano (b), and sweet marjoram (c) plantlets were
used for training and evaluating the classifiers performance.
The transients were captured from three pots for each
species in three consecutive days. Thus, each species was

represented by several millions of transients captured in
different pixels, representing different leaves and individual
plants and taken at different times. Out of this enormous
data set, we selected at random ca. 6,600 transients for each
species. The thus selected sets of transients Pa, Pb, Pc
representing transients of the plant species (a), (b), (c) were
randomly and evenly divided into two pixel subsets each:
(Pa

train, Pa
test), (Pb

train, Pb
test), and (Pc

train, Pc
test), respec-

tively. The training sets Pa
train, Pb

train, Pc
train were used as a

reference to represent the species (a), (b), (c) whereas the
mixed testing set (Pa

test+Pb
test+Pc

test) was used to evaluate
the performance of individual classifiers. Transients arbi-
trarily chosen from the testing set (Pa

test+Pb
test+Pc

test) were
compared with each of the training sets (Pa

train, Pb
train,

Pc
train) and classified as belonging to one of the three

species (a), (b), (c) using the classifier algorithm. The
classification was then validated to be either true or false by
confronting the classification result with the origin of the
particular transient in plant species (a), (b), or (c). The
performance of each of the investigated classifiers was
quantified by a number between 0–1: value ‘0’ meaning
random classification (1/3 of classifications into 3 equally
represented classes correct, 2/3 incorrect) and value ‘1’
meaning that the classifier was 100% successful.

Feature selection

The ChlF transients were captured in extensive series of
fluorescence images, called features in our study.
Feature selection algorithms are designed to reduce the
number of features (fluorescence images) for an effec-
tive classification [45]. The reduction is based on an
identification of an image sub-set that contains the most
useful information for plant species identification. Here,
we investigated four feature selection methods: Individual
Feature Selection (IFS), Sequential Forward Selection
(SFS) [46], Sequential Backward Selection (SBS) [46],
and Sequential Forward Floating Selection (SFFS) [47].

Classifier Performance Execution time (s)

Linear Discriminant Classifier (LDC) 0.74 14

Linear Discriminant Classifier (LDC) 0.74 14

Quadratic Discriminant Classifier (QDC) 0.82 15

Fisher’s Linear Discriminant Classifier (FLDC) 0.75 62

Automatic Neural Networks Classifier (NEURC) 0.77 1,060

k-Nearest Neighbor Classifier (k-NN) (k=3) 0.76 13,007

Nearest Neighbor Classifier (NN) 0.74 13,793

Support Vector Classifier (SVC) 0.73 28,006

Nearest Mean Classifier (NMC) 0.15 5

Table 1 Performance of eight
different classifiers (0—random,
1–100% correct) and computa-
tion time with 9,900 (9,900/3 for
each species) testing and 9,900
(9,900/3 for each species)
training transients

For computation we used
personal computer with Intel(R)
Celeron(R) 2.60 GHz processor
and 1.25 GB of RAM.
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Results

Classifier performance and execution time

We used eight different algorithms in a simulated classifi-
cation that was aimed at evaluating their performance and
computational time. The results are summarized in Table 1.

With each of the classifiers, we used typically 3,300
testing ChlF transients1 from each of the three pots with
basil (a), oregano (b), and sweet marjoram plantlets (c).
These individual testing transients were compared one by
one with the training transients of the three species. By that,
the algorithms classified each of the testing transients to
one of the three species and the classification was counted
either as false or correct depending on the true origin of the
training transient. With known numbers of correct and false
classifications for each of them, the performance of the
classifiers was renormalized to 0 if completely random (1/3
of correct classifications in three equally represented
classes) and to 1 for 100% of correct classifications. The
performance results are shown in the second column of
Table 1. Seven out of eight classifiers performed in a
narrow range from 0.73 to 0.82.

Table 1 also shows in its third column the computational
time required to classify the given number of testing
transients. The nearest mean classifier was by far the fastest
(5 s) classifier that, however, exhibited the poorest
performance. On the other extreme, Quadratic Discriminant
Classifier (15 s), and Linear Discriminant Classifier (14 s),
and Fisher’s Linear Discriminant Classifier (62 s) required
low computation time and, yet, exhibited a high perfor-
mance of species discrimination. Therefore, we choose to
continue further evaluation only with Quadratic Discrimi-
nant Classifier (QDC) and with Linear Discriminant
Classifier (LDC).2

Training set size

Another key property of the classifiers affecting their
computation time requirement was the size of the training
sets that was required for their optimal performance.
Figure 1 shows the performance of the two most efficient
classifiers, QDC and LDC, increasing with increasing size
of the training sets. Above 500 training ChlF transients, the
performance of LDC (solid line) started steeply increasing
and reached to ca. 0.74 with ca. 3,500 training ChlF
transients. A similar but less steep increase in performance

was also observed with QDC (dotted line). The QDC
classifier kept increasing to ca. 0.82 and outperformed LDC
at the training set size larger than 4,500 transients (Fig. 1).

In the classifications documented in Fig. 1 and in
Table 1, we used each of the 247 images capturing the
entire ChlF transient in our experiments. However, one can
possibly assume that some of the images show nearly
identical information, such as repeatedly recorded images
of FM or F0, whereas some other images within the
fluorescence transient may be highly contrasting. The most
contrasting images can be identified by feature selection
algorithms that search for a small subset of features
(images) that yield classification performance approaching
or even exceeding the performance of the full image
sequence. With such a reduced and optimized feature set,
one can perform classification more effectively and faster
than with the full image sequence.

Comparison of four feature selection methods
using the best classifier QDC

Figure 2 shows the performance of QDC when the
simulated classification is executed using a reduced number
of fluorescence images. Earlier, Tyystjarvi et al. [22] choose
to reduce the number of relevant features empirically. Here,
we used and compared several feature selection algorithms
in an effort to optimize the procedure (Fig. 2).

The reduced set of the ChlF images was identified by
four different feature selection algorithms: Individual
Feature Selection (IFS), Sequential Forward Selection
(SFS), Sequential Backward Selection (SBS) and Sequen-
tial Forward Floating Selection (SFFS). The poorest
performing algorithm was the Individual Feature Selection
(IFS) that evaluated the performance of each single image
and choose “the best individual performers” that, under-

1 Somewhat smaller sets were used with the slower algorithms: with
the automatic neural networks classifier (2,250 transients) and with the
support vector classifier (1,350 transients) was used for both training
and testing set for each species.
2 The Fisher’s Linear Discriminant Classifier is closely related to the
Linear Discriminant Classifier.

Fig. 1 The performance of the linear (solid line) and of the quadratic
(dotted line) discriminant classifiers as they increase with the number
of transients in the training set
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standably failed in comparison with “the best performing
feature teams”. The failure can be understood when
considering the model situation in which N images capture
the same dynamic feature such as F0. Assuming that this
feature is yielding the highest contrast, these N images will
all be selected by IFS in spite of the fact that they contain
the same information and the classification performance
does not increase with adding more images of the same
type. The other feature selection algorithms choose also the
best performer but then look for a teammate feature that
leads to the highest performance enhancement. This is the
principle of the Sequential Forward Selection (SFS). In an
alternate way, the algorithm can also work backwards and
eliminate from the whole feature set the data that, when not
considered in the classification, do not reduce or reduce
minimally the overall classification performance. This is the
principle of the Sequential Backward Selection (SBS).
Slightly better performance was found with training subsets
of ChlF images identified by SFS compared to those
identified by SBS. The best performing training sub-sets
of fluorescence images were found with the SFFS. The
highest performance was achieved with approximately a
subset of ca. 50–100 images (Fig. 2)3.

Comparing images obtained with conventional ChlF
parameters and with combinatorial imaging

Figure 3 presents the images of three conventional
fluorescence parameters: F0, FM, and FV/FM for a pot in
which a random mixture of the three species was grown.
The F0 (Fig. 3a) and FM (Fig. 3b) signals are largely
heterogeneous with slightly higher signals around the
center of the image than at its periphery. This effect is
probably due to the uncorrected instrument sensitivity
profile used in our experiments. Also, the ChlF signals
emitted from leaf margins tend to be lower than from the
central leaf segments. No obvious dominant classification
was observed for individual plants of either species. The
FV/FM (Fig. 3c) signals are much more homogeneous than
F0 (Fig. 3a) and FM (Fig. 3b) because the variability due to
non-uniform illumination and sensitivity is reduced in
ratio. Yet, no dominant species classification was found in
Fig. 3c.

In contrast, Fig. 4 represents the classification of
individual pixels by the Quadratic Discriminant Classifier,
QDC that was used with a sub-set of 50 ChlF images that
were identified by the Sequential Forward Floating Selec-
tion, SFFS algorithm. Clearly, the top row in Fig. 4 shows
that the classification was successful when applied on
single species pots.4 The Fig. 4a shows a pot with basil
(Ocimum basilicum, L.) that was mostly classified correctly
(red color) with only few pixels classified erroneously by
green color as oregano (Origanum vulgare, L.) and by blue
color as majoram (Origanum majorana, L.). The pot in Fig.
4b with oregano was also mostly classified correctly (green
color) with only few pixels classified erroneously by red
color as sweet basil and few by blue color as marjoram.
Similarly, the classification of marjoram in Fig. 4c was
dominantly correct (blue color).

Figure 4d shows classification result in a more realistic
situation where all the species were mixed in a single pot.
In contrast to the conventional ChlF parameters shown in
Fig. 3, the combinatorial imaging shown in Fig. 4d leads to
a clear contrast with red pixels classified as basil (large
leaves) contrasting with the two other two species: blue
pixels classified as sweet marjoram, and green pixels as
oregano.

Discussion

The simplest and most intuitive among the classifiers tested
is the nearest mean classifier, NMC, which is representing
each species by a single transient that is obtained by

3 One should note that the feature selection techniques investigated
here do not analyze all potential combinations of fluorescence images
and in this sense they are called suboptimal. We choose this approach
to maintain feasibility with present high performance personal
computers. Because of that unexpected time consumption it was
impossible to apply optimal techniques such as branch and bound
[48], however it would significantly increase the classification
performance of the reduced feature sets.

Fig. 2 Performance of the Quadratic Discriminant Classifier, QDC
that was applied using a reduced number of fluorescence images that
were identified by four algorithms: Individual Feature Selection,
Sequentional Forward Selection, Sequentional Backward Selection
and Sequentional Forward Floating Selection

4 These pots were different from those used for classifier training.
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averaging all transients in the respective training class [44].
Unknown transients are then compared with each of the
averaged representative transients of the individual species
and classified to the species that is the most similar. The

performance of this classifier was found in our experiments
to be very low around 0.15 (Table 1). The NMC classifier
failed because it does not reflect width of the statistical
distribution in the training classes.

Fig. 4 The panels a, b, and c show QDC classification of
fluorescence transients in individual pixels of images with pots
containing seedlings of basil (Ocimum basilicum, L.), oregano
(Origanum vulgare, L.) and marjoram (Origanum majorana, L.).
The pixels classified as sweet basil are shown in red, those classified

as oregano are shown in green and the pixels classified as marjoram
are shown in blue. The same color code of classification is used in
panel d that shows a pot in which all the three species grew mixed
together

Fig. 3 The images a, b, and c represent the conventional fluorescence
parameters F0, FM and FV/FM of a pot with randomly mixed specie.
The fluorescence parameters are shown using a rainbow false color
scale with minimum values shown in blue and maximum values

shown in red. Normalization was done by subtracting the minimum
value and further division by the difference between maximum minus
minimum value, i.e. F�min ðFÞ

max ðFÞ�min ðFÞ
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The other seven classifiers were of similarly high
performance (0.73 to 0.82). Among these, we selected the
best classifier based on its computation time. The compu-
tation time of the Support Vector Classifier (SVC) was the
longest (ca. 8 h with a standard PC, Table 1). The long
computation time of SVC was required for transformation
of the original data into a space of a higher dimension that
was followed by finding a linear separating surface between
the two classes [49]. The k-Nearest Neighbor Classifier
(k-NN), the Nearest Neighbor Classifier (NN) and the
Automatic Neural Networks Classifier (NEURC) were
also requiring excessive computation time. The optimal
combination of high performance with acceptable compu-
tation time was found with the Quadratic Discriminant
Classifier (QDC) (performance 0.82 in 15 s of computa-
tion time). The Linear Discriminant Classifier (LDC)
achieved the second best classification performance of
ca. 0.74 with 14 s of the computation time. The LDC and
QDC identify a linear and quadratic hyperplane, respec-
tively, that best separates the training transients of the
individual species. The classification consists in finding
on which side of the hyperplane the classified transient is.
The classification performance of QDC (0.82) was better
than that of the LDC (0.74) because the training classes
were of different distribution leading to different covari-
ance matrices and, eventually, to non-linear separating
hyperplane.

With QDC and LDC identified as the two best
performing classifiers, one needs to optimize the size of
the training sets [50]. This was done by investigating the
classification performance with increasing size of training
data sets (Fig. 1). With very small training data sets the
performance was not stable as the number of training
transients was not sufficient to reliably place the classifi-
cation hyperplane. The performance of LDC rapidly
increased with increasing the number of training transients
to 3,500. Above 3,500 training transients the position of
the linear hyperplane was near to optimum and addition of
training transients to 4,500 and more led to no improve-
ment of performance. Optimal placing of a quadratic
hyperplane that separates the transients of two species is
harder and requires more training data. Thus, the perfor-
mance of QDC was increasing less steeply compared to
LDC and outperformed LDC only with ca. 4,500 training
transients. In contrast to LDC, the QDC performance
continued increasing above 8,100 training ChlF transients
where we choose to limit our search because of computa-
tion time limits.

With QDC as the best classifier, we further optimized the
species discrimination by feature selection. Both SFS and
SBS are more effective than IFS (Fig. 2). The best results
were obtained with the Sequential Forward Floating
Selection (SFFS). The SFFS works in the similar way as

SFS algorithm, but after every addition of an image, it
checks if removing another image from the selection would
not lead to a better performance than one step back. By
checking such potential “backward steps”, the SFFS
algorithm identified feature sets that were performing
slightly better than the sets found by SFS or SBS (Fig. 2).
In our experiments, the SFFS algorithm reduced the full
data set of 247 images to 50 images that were the most
effective. The classification with 50 images was signifi-
cantly faster than with the full data set (247 images) without
compromising the classification performance.

Our results show that the Quadratic Discriminant
Classifier (QDC) utilizing only 50 images found by the
Sequential Forward Floating Selection (SFFS) constitutes a
robust and effective method for plant species discrimination
based on ChlF transients. In our simulated species
discrimination, the conventional ChlF parameters such as
F0, FM, and FV/FM shown in Fig. 3 as well as other
conventional parameters that were tested but not shown
(NPQ, qP, Rfd) failed. The low discriminative potential of
these parameters is understandable because the closely
related plants have similar chlorophyll density in leaves,
similar leaf structure and similar photosynthetic yield [40,
51]. The natural variability of the ChlF emission and low
contrast between the closely related species do not allow
effective species discrimination.

In contrast, the combinatorial species discrimination
represented in Fig. 4 was highly effective. When tested
with a pot in which all three species were mixed (Fig. 4d)
the contrast between the species was preserved although
some erroneously classified pixels were detected, probably,
because of leaf overlaps that were prominent in the two
small leaf species (oregano and marjoram). The classifica-
tion of basil with large leaves was typically correct even in
the pot with mixed species (basil).
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